Fast automated segmentation of wrist bones in magnetic resonance images
نویسندگان
چکیده
PURPOSE According to current recommendations in diagnostics of rheumatoid arthritis (RA), Magnetic resonance (MR) images of wrist joints are used to evaluate three main signs of RA: synovitis, bone edema and bone erosions. In this paper we present an efficient method for segmentation of 15 bones present on MR images of the wrist which is inevitable for future computer-assisted diagnosis system for RA lesions. METHOD The segmentation procedure consists of two stages. The first stage is evaluation of markers (parts of bones working as seeds for the watershed algorithm) for bones in every joint: the distal parts of ulna and radius, the proximal parts of metacarpal bones and carpal bones. In the second stage the watershed from markers algorithm is applied based on the markers determined in the previous stage and the wrist bones are segmented. The markers were found using Multi Otsu algorithm along with custom method for filtering bones from other tissues. RESULTS We analyzed 34 MR images. The automated segmentations were compared with manual segmentations using metrics: accuracy ACC derived from area under ROC curve AUC, Dice coefficient and mean absolute distance MAD. The mean (standard deviation) values of ACC, Dice and MAD were 0.99 (0.02), 0.98 (0.04) and 1.21 (0.39), respectively. CONCLUSION The results of this study prove that our method is efficient and gives satisfactory results for segmentation of bones on low-field MR images of the wrist.
منابع مشابه
A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملSegmentation of Magnetic Resonance Brain Imaging Based on Graph Theory
Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملA Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures
Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers in biology and medicine
دوره 65 شماره
صفحات -
تاریخ انتشار 2015